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latentFactoR-package latentFactoR–package

Description

Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous,
or mixed. Skew, cross-loadings, and population error can be added. All parameters can be manipu-
lated. Data categorization is based on Garrido, Abad, and Ponsoda (2011).

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Maria Dolores Nieto Canaveras <mni-
etoca@nebrija.es>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Christensen, A. P., Garrido, L. E., & Golino, H. (2022).
Unique variable analysis: A network psychometrics method to detect local dependence.
PsyArXiv

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011).
Performance of Velicer’s minimum average partial factor retention method with categorical vari-
ables.
Educational and Psychological Measurement, 71(3), 551-570.

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., ... & Martinez-
Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional
techniques to identify the number of latent factors: A simulation and tutorial. Psychological Meth-
ods, 25(3), 292-320.
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add_cross_loadings Adds (Substantial) Cross-loadings to simulate_factors Data

Description

Intended to add substantial cross-loadings to simulated data from simulate_factors. See exam-
ples to get started

Usage

add_cross_loadings(
lf_object,
proportion_cross_loadings,
proportion_cross_loadings_range = NULL,
magnitude_cross_loadings,
magnitude_cross_loadings_range = NULL,
leave_cross_loadings = FALSE

)

Arguments

lf_object Data object from simulate_factors
proportion_cross_loadings

Numeric (length = 1 or factors). Proportion of variables that should be cross-
loaded randomly onto one other factor. Accepts number of variables to cross-
load onto one other factor as well

proportion_cross_loadings_range

Numeric (length = 2). Range of proportion of variables that should be cross-
loaded randomly onto one other factor. Accepts number of variables to cross-
load onto one other factor as well

magnitude_cross_loadings

Numeric (length = 1, factors, or total number of variables to cross-load across
all factors). The magnitude or size of the cross-loadings. Must range between
-1 and 1.

magnitude_cross_loadings_range

Numeric (length = 2). The range of the magnitude or size of the cross-loadings.
Defaults to NULL

leave_cross_loadings

Boolean. Should cross-loadings be kept? Defaults to FALSE. Convergence prob-
lems can arise if cross-loadings are kept, so setting them to zero is the default.
Only set to TRUE with careful consideration of the structure. Make sure to per-
form additional checks that the data are adequate

Value

Returns a list containing the same parameters as the original lf_object but with updated data,
population_correlation, and parameters (specifically, loadings matrix). Also returns original
lf_object in original_results
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Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Christensen, A. P., Garrido, L. E., & Golino, H. (2022). Unique variable analysis: A network
psychometrics method to detect local dependence. PsyArXiv

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Add substantial cross-loadings
two_factor_CL <- add_cross_loadings(

lf_object = two_factor,
proportion_cross_loadings = 0.25,
magnitude_cross_loadings = 0.35

)

# Randomly vary proportions
two_factor_CL <- add_cross_loadings(

lf_object = two_factor,
proportion_cross_loadings_range = c(0, 0.25),
magnitude_cross_loadings = 0.35

)

# Randomly vary magnitudes
two_factor_CL <- add_cross_loadings(

lf_object = two_factor,
proportion_cross_loadings = 0.25,
magnitude_cross_loadings_range = c(0.35, 0.45)

)

# Set number of cross-loadings per factor (rather than proportion)
two_factor_CL <- add_cross_loadings(

lf_object = two_factor,
proportion_cross_loadings = 2,
magnitude_cross_loadings = 0.35

)
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add_local_dependence Adds Local Dependence to simulate_factors Data

Description

Adds local dependence to simulated data from simulate_factors. See examples to get started

Usage

add_local_dependence(
lf_object,
method = c("correlate_residuals", "minor_factors", "threshold_shifts"),
proportion_LD,
proportion_LD_range = NULL,
add_residuals = NULL,
add_residuals_range = NULL,
allow_multiple = FALSE

)

Arguments

lf_object Data object from simulate_factors

method Character (length = 1). Method to generate local dependence between variables.
Only "correlate_residuals" at the moment. Future developments will in-
clude minor factor and threshold-shift methods. Description of methods:

• "correlate_residuals" — Adds residuals directly to the population cor-
relation matrix prior to data generation (uses population correlation matrix
from simulate_factors)

• "minor_factors" — Coming soon...
• "threshold_shifts" — Coming soon...

proportion_LD Numeric (length = 1 or factors). Proportion of variables that should be locally
dependent across all or each factor. Accepts number of locally dependent values
as well

proportion_LD_range

Numeric (length = 2). Range of proportion of variables that are randomly se-
lected from a random uniform distribution. Accepts number of locally depen-
dent values as well. Defaults to NULL

add_residuals Numeric (length = 1, factors, or total number of locally dependent variables).
Amount of residual to add to the population correlation matrix between two
variables. Only used when method = "correlated_residuals". Magnitudes
are drawn from a random uniform distribution using +/- 0.05 of value input.
Can also be specified directly (same length as total number of locally dependent
variables). General effect sizes range from small (0.20), moderate (0.30), to
large (0.40)
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add_residuals_range

Numeric (length = 2). Range of the residuals to add to the correlation matrix are
randomly selected from a random uniform distribution. Defaults to NULL

allow_multiple Boolean. Whether a variable should be allowed to be locally dependent with
more than one other variable. Defaults to FALSE. Set to TRUE for more complex
locally dependence patterns

Value

Returns a list containing:

data Simulated data from the specified factor model
population_correlation

Population correlation matrix with local dependence added
original_correlation

Original population correlation matrix before local dependence was added
correlated_residuals

A data frame with the first two columns specifying the variables that are locally
dependent and the third column specifying the magnitude of the added residual
for each locally dependent pair

original_results

Original lf_object input into function

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Christensen, A. P., Garrido, L. E., & Golino, H. (2023). Unique variable analysis: A network
psychometrics method to detect local dependence. Multivariate Behavioral Research, 1–18.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Add local dependence
two_factor_LD <- add_local_dependence(

lf_object = two_factor,
proportion_LD = 0.25,
add_residuals = 0.20,
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allow_multiple = FALSE
)

# Randomly vary proportions
two_factor_LD <- add_local_dependence(

lf_object = two_factor,
proportion_LD_range = c(0.10, 0.50),
add_residuals = 0.20,
allow_multiple = FALSE

)

# Randomly vary residuals
two_factor_LD <- add_local_dependence(

lf_object = two_factor,
proportion_LD = 0.25,
add_residuals_range = c(0.20, 0.40),
allow_multiple = FALSE

)

# Randomly vary proportions, residuals, and allow multiple
two_factor_LD <- add_local_dependence(

lf_object = two_factor,
proportion_LD_range = c(0.10, 0.50),
add_residuals_range = c(0.20, 0.40),
allow_multiple = TRUE

)

add_method_factors Adds Methods Factors to simulate_factors Data

Description

Adds methods factors to simulated data from simulate_factors. See examples to get started

Usage

add_method_factors(
lf_object,
proportion_negative = 0.5,
proportion_negative_range = NULL,
methods_factors,
methods_loadings,
methods_loadings_range = 0,
methods_correlations,
methods_correlations_range = NULL

)
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Arguments

lf_object Data object from simulate_factors. Data must be categorical. If data are not
categorical, then there function with throw an error

proportion_negative

Numeric (length = 1 or factors). Proportion of variables that should have neg-
ative (or flipped) dominant loadings across all or each factor. Accepts number
of variables as well. The first variables on each factor, up to the corresponding
proportion, will be flipped. Set to 0 to not have any loadings flipped. Defaults
to 0.50

proportion_negative_range

Numeric (length = 2). Range of proportion of variables that are randomly se-
lected from a uniform distribution. Accepts number of number of variables as
well. Defaults to NULL

methods_factors

Numeric
methods_loadings

Numeric
methods_loadings_range

Numeric
methods_correlations

Numeric
methods_correlations_range

Numeric

Value

Returns a list containing:

data Biased data simulated data from the specified factor model

unbiased_data The corresponding unbiased data prior to replacing values to generate the (bi-
ased) data

parameters Bias-adjusted parameters of the lf_object input into function

original_results

Original lf_object input into function

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Garcia-Pardina, A., Abad, F. J., Christensen, A. P., Golino, H., & Garrido, L. E. (2024). Dimension-
ality assessment in the presence of wording effects: A network psychometric and factorial approach.
Behavior Research Methods.



add_population_error 9

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000, # number of cases = 1000
variable_categories = 5 # 5-point Likert scale

)

# Add methods factors
two_factor_methods_effect <- add_method_factors(

lf_object = two_factor,
proportion_negative = 0.50,
methods_loadings = 0.20,
methods_loadings_range = 0.10

)

add_population_error Adds Population Error to simulate_factors Data

Description

Adds population error to simulated data from simulate_factors. See examples to get started

Usage

add_population_error(
lf_object,
cfa_method = c("minres", "ml"),
fit = c("cfi", "rmsea", "rmsr", "raw"),
misfit = c("close", "acceptable"),
error_method = c("cudeck", "yuan"),
tolerance = 0.01,
convergence_iterations = 10,
leave_cross_loadings = FALSE

)

Arguments

lf_object Data object from simulate_factors

cfa_method Character (length = 1). Method to generate population error. Defaults to "ml".
Available options:

• "minres" — Minimum residual
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• "ml" — Maximum likelihood

fit Character (length = 1). Fit index to control population error. Defaults to "rmsr".
Available options:

• "cfi" — Comparative fit index
• "rmsea" — Root mean square error of approximation
• "rmsr" — Root mean square residuals
• "raw" — Direct application of error

misfit Character or numeric (length = 1). Magnitude of error to add. Defaults to
"close". Available options:

• "close" — Slight deviations from original population correlation matrix
• "acceptable" — Moderate deviations from original population correlation

matrix

While numbers can be used, they are not recommended. They can be used to
specify misfit but the level of misfit will vary depending on the factor structure

error_method Character (length = 1). Method to control population error. Defaults to "cudeck".
Description of methods:

• "cudeck" — Description coming soon... see Cudeck & Browne, 1992 for
more details

• "yuan" — Description coming soon...

tolerance Numeric (length = 1). Tolerance of SRMR difference between population error
correlation matrix and the original population correlation matrix. Ensures that
appropriate population error was added. Similarly, verifies that the MAE of the
loadings are not greater than the specified amount, ensuring proper convergence.
Defaults to 0.01

convergence_iterations

Numeric (length = 1). Number of iterations to reach parameter convergence
within the specified ‘tolerance‘. Defaults to 10

leave_cross_loadings

Boolean. Should cross-loadings be kept? Defaults to FALSE. Convergence prob-
lems can arise if cross-loadings are kept, so setting them to zero is the default.
Only set to TRUE with careful consideration of the structure. Make sure to per-
form additional checks that the data are adequate

Value

Returns a list containing:

data Simulated data from the specified factor model
population_correlation

Population correlation matrix with local dependence added
population_error

A list containing the parameters used to generate population error:

• error_correlation — Correlation matrix with population error added
(same as population_correlation)
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• fit — Fit measure used to control population error
• delta — Minimum of the objective function corresponding to the misfit

value
• misfit — Specified misfit value
• loadings — Estiamted CFA loadings after error has been added

original_results

Original lf_object input into function

Author(s)

bifactor authors
Marcos Jimenez, Francisco J. Abad, Eduardo Garcia-Garzon, Vithor R. Franco, Luis Eduardo Gar-
rido <luisgarrido@pucmm.edu>

latentFactoR authors
Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>, Marcos Jimenez, Francisco J. Abad, Eduardo
Garcia-Garzon, Vithor R. Franco

References

Cudeck, R., & Browne, M.W. (1992). Constructing a covariance matrix that yields a specified
minimizer and a specified minimum discrepancy function value. Psychometrika, 57, 357–369.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Add small population error using Cudeck method
two_factor_Cudeck <- add_population_error(

lf_object = two_factor,
cfa_method = "minres",
fit = "rmsr", misfit = "close",
error_method = "cudeck"

)

# Add small population error using Yuan method
two_factor_Yuan <- add_population_error(

lf_object = two_factor,
cfa_method = "minres",
fit = "rmsr", misfit = "close",
error_method = "yuan"

)
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add_wording_effects Adds Wording Effects to simulate_factors Data

Description

Adds wording effects to simulated data from simulate_factors. See examples to get started

Usage

add_wording_effects(
lf_object,
method = c("acquiescence", "difficulty", "random_careless", "straight_line", "mixed"),
proportion_negative = 0.5,
proportion_negative_range = NULL,
proportion_biased_cases = 0.1,
proportion_biased_variables = 1,
proportion_biased_variables_range = NULL,
proportion_biased_person = 1,
proportion_biased_person_range = NULL

)

Arguments

lf_object Data object from simulate_factors. Data must be categorical. If data are not
categorical, then there function with throw an error

method Character (length = 1). Method to generate wording effect to add to the data.
Description of methods:

• "acquiescence" —Generates new data with flipped dominant loadings
(based on proportion_negative) and ensures a bias such that variables
have a restricted range of responding (e.g., only 4s and 5s on a 5-point
Likert scale)

• "difficulty" — Generates new data with flipped dominant loadings (based
on proportion_negative) and uses this data as the data without wording
effects. Then, the signs of the dominant loadings are obtained and the dom-
inant loadings are made to be absolute. Finally, the skews are multiplied by
the signs of the original dominant loadings when generating the data with
the wording effects

• "random_careless" — Number of cases up to proportion_biased_cases
are sampled and replaced by values from a random uniform distribution
ranging between the lowest and highest response category for each vari-
able. These values then replace the values in the original data

• "straight_line" — Coming soon...
proportion_negative

Numeric (length = 1 or factors). Proportion of variables that should have neg-
ative (or flipped) dominant loadings across all or each factor. Accepts number
of variables as well. The first variables on each factor, up to the corresponding
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proportion, will be flipped. Set to 0 to not have any loadings flipped. Defaults
to 0.50

proportion_negative_range

Numeric (length = 2). Range of proportion of variables that are randomly se-
lected from a uniform distribution. Accepts number of number of variables as
well. Defaults to NULL

proportion_biased_cases

Numeric (length = 1). Proportion of cases that should be biased with wording ef-
fects. Also accepts number of cases to be biased. The first n number of cases, up
to the corresponding proportion, will be biased. Defaults to 0.10 or 10 percent
of cases.

proportion_biased_variables

Numeric (length = 1 or factors). Proportion of variables that should be biased
with wording effects. For method = "difficulty", proportion of biased vari-
ables will only count for the negative variables. For method = "acquiescence",
proportion of biased variables will only count for variables below the mid-point
of the variable_categories. Defaults to 1 or all possible variables

proportion_biased_variables_range

Numeric (length = 2). Range of proportion of variables that should be biased
with wording effects. Values are drawn randomly from a uniform distribution.
Defaults to NULL

proportion_biased_person

Numeric (length = 1 or proportion_biased_cases x sample_size). Person-
specific parameter of how many much bias the proportion_biased_cases
will have over the possible biased variables. This parameter interacts with
proportion_biased_variables. Parameter specifies the proportion of vari-
ables that should have bias per person. If one value is provided, then all biased
cases will have the same proportion of variables biased. Individual values are
possible by providing values for each biased case (round(nrow(lf_object$data)
* proportion_biased_cases)). Setting individual values for each biased case
is not recommended (use proportion_biased_person_range instead). De-
faults to 1 or all possible biased variables for all biased cases

proportion_biased_person_range

Numeric (length = 2). Range to randomly draw bias from a uniform distribution.
Allows for random person-specific bias to be obtained. Defaults to NULL

Value

Returns a list containing:

data Biased data simulated data from the specified factor model
unbiased_data The corresponding unbiased data prior to replacing values to generate the (bi-

ased) data
biased_sample_size

The number of cases that have biased data
adjusted_results

Bias-adjusted lf_object input into function
original_results

Original lf_object input into function
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Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Garcia-Pardina, A., Abad, F. J., Christensen, A. P., Golino, H., & Garrido, L. E. (2022). Dimension-
ality assessment in the presence of wording effects: A network psychometric and factorial approach.
PsyArXiv.

Garrido, L. E., Golino, H., Christensen, A. P., Martinez-Molina, A., Arias, V. B., Guerra-Pena, K.,
... & Abad, F. J. (2022). A systematic evaluation of wording effects modeling under the exploratory
structural equation modeling framework. PsyArXiv.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000, # number of cases = 1000
variable_categories = 5 # 5-point Likert scale

)

# Add wording effects using acquiescence method
two_factor_acquiescence <- add_wording_effects(

lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "acquiescence"

)

# Add wording effects using difficulty method
two_factor_difficulty <- add_wording_effects(

lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "difficulty"

)

# Add wording effects using random careless method
two_factor_random_careless <- add_wording_effects(

lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "random_careless"

)

# Add wording effects using straight line method
two_factor_random_careless <- add_wording_effects(
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lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "straight_line"

)

# Add wording effects using mixed method
two_factor_mixed <- add_wording_effects(

lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "mixed"

)

# Add wording effects using acquiescence and straight line method
two_factor_multiple <- add_wording_effects(

lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = c("acquiescence", "straight_line")

)

categorize Categorize Continuous Data

Description

Categorizes continuous data based on Garrido, Abad and Ponsoda (2011; see references). Categor-
ical data with 2 to 6 categories can include skew between -2 to 2 in increments of 0.05

Usage

categorize(data, categories, skew_value = 0)

Arguments

data Numeric (length = n). A vector of continuous data with n values. For matrices,
use apply

categories Numeric (length = 1). Number of categories to create. Between 2 and 6 cate-
gories can be used with skew

skew_value Numeric (length = 1). Value of skew. Ranges between -2 to 2 in increments of
0.05. Skews not in this sequence will be converted to the nearest value in this
sequence. Defaults to 0 or no skew

Value

Returns a numeric vector of the categorize data
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Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>,
Hudson Golino <hfg9s@virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011).
Performance of Velicer’s minimum average partial factor retention method with categorical vari-
ables.
Educational and Psychological Measurement, 71(3), 551-570.

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., ... & Martinez-
Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional
techniques to identify the number of latent factors: A simulation and tutorial. Psychological Meth-
ods, 25(3), 292-320.

Examples

# Dichotomous data (no skew)
dichotomous <- categorize(

data = rnorm(1000),
categories = 2

)

# Dichotomous data (with positive skew)
dichotomous_skew <- categorize(

data = rnorm(1000),
categories = 2,
skew_value = 1.25

)

# 5-point Likert scale (no skew)
five_likert <- categorize(

data = rnorm(1000),
categories = 5

)

# 5-point Likert scale (negative skew)
five_likert <- categorize(

data = rnorm(1000),
categories = 5,
skew_value = -0.45

)

data_to_zipfs Transforms simulate_factors Data to Zipf’s Distribution
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Description

Zipf’s distribution is commonly found for text data. Closely related to the Pareto and power-law
distributions, the Zipf’s distribution produces highly skewed data. This transformation is intended
to mirror the data generating process of Zipf’s law seen in semantic network and topic modeling
data.

Usage

data_to_zipfs(lf_object, beta = 2.7, alpha = 1, dichotomous = FALSE)

Arguments

lf_object Data object from simulate_factors

beta Numeric (length = 1). Sets the shift in rank. Defaults to 2.7

alpha Numeric (length = 1). Sets the power of the rank. Defaults to 1

dichotomous Boolean (length = 1). Whether data should be dichotomized rather than frequen-
cies (e.g., semantic network analysis). Defaults to FALSE

Details

The formula used to transform data is (Piantadosi, 2014):

f(r) proportional to 1 / (r + beta)^alpha

where f(r) is the rth most frequency, r is the rank-order of the data, beta is a shift in the rank (fol-
lowing Mandelbrot, 1953, 1962), and alpha is the power of the rank with greater values suggesting
greater differences between the largest frequency to the next, and so forth.

The function will transform continuous data output from simulate_factors. See examples to get
started

Value

Returns a list containing:

data Simulated data that has been transform to follow Zipf’s distribution

RMSE A vector of root mean square errors for transformed data and data assumed to
follow theoretical Zipf’s distribution and Spearman’s correlation matrix of the
transformed data compared to the original population correlation matrix

spearman_correlation

Spearman’s correlation matrix of the transformed data
original_correlation

Original population correlation matrix before the data were transformed
original_results

Original lf_object input into function

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>
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References

Mandelbrot, B. (1953). An informational theory of the statistical structure of language. Communi-
cation Theory, 84, 486–502.

Mandelbrot, B. (1962). On the theory of word frequencies and on related Markovian models of
discourse. Structure of Language and its Mathematical Aspects, 190–219.

Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic Bulletin & Review, 21(5), 1112-1130.

Zipf, G. (1936). The psychobiology of language. London, UK: Routledge.

Zipf, G. (1949). Human behavior and the principle of least effort. New York, NY: Addison-Wesley.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Transform data to Mandelbrot's Zipf's
two_factor_zipfs <- data_to_zipfs(

lf_object = two_factor,
beta = 2.7,
alpha = 1

)

# Transform data to Mandelbrot's Zipf's (dichotomous)
two_factor_zipfs_binary <- data_to_zipfs(

lf_object = two_factor,
beta = 2.7,
alpha = 1,
dichotomous = TRUE

)

EKC Estimate Number of Dimensions using Empirical Kaiser Criterion

Description

Estimates the number of dimensions in data using Empirical Kaiser Criterion (Braeken & Van
Assen, 2017). See examples to get started
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Usage

EKC(data, sample_size)

Arguments

data Matrix or data frame. Either a dataset with all numeric values (rows = cases,
columns = variables) or a symmetric correlation matrix

sample_size Numeric (length = 1). If input into data is a correlation matrix, then specifying
the sample size is required

Value

Returns a list containing:

dimensions Number of dimensions identified

eigenvalues Eigenvalues

reference Reference values compared against eigenvalues

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Braeken, J., & Van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods,
22(3), 450–466.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Perform Empirical Kaiser Criterion
EKC(two_factor$data)
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ESEM Estimates Exploratory Structural Equation Model

Description

A general function to estimate an Exploratory Structural Equation Model (ESEM) using the lavaan
package. With latentFactoR objects, the function requires fewer inputs

Usage

ESEM(
data,
factors,
variables,
estimator = c("MLR", "WLSMV"),
fit_measures = NULL,
variable_polarity = NULL,
wording_factor = c("none", "CTCM1", "CTCM1_each", "RI", "RI_each"),
CTCM1_polarity = c("negative", "positive"),
...

)

Arguments

data Numeric matrix, data frame, or latentFactoR object

factors Numeric (length = 1). Number of ESEM factors to estimate

variables Numeric (length = 1 or factors). Number of variables per factor. A vector
the length of the number of factors can be specified to allow varying number of
variables on each factor (necessary for some wording_factor arguments)

estimator Character. Estimator to be used in cfa. Default options are "MLR" for continuous
data and "WLSMV" for categorical data

fit_measures Character. Fit measures to be computed using fitMeasures. Defaults to: "chisq",
"df", "pvalue", "cfi", "tli", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper",
"rmsea.pvalue", and "srmr". Other measures can be added but these measures
will always be produced.
If scaled values are available (not NA), then scaled fit measures will be used.

variable_polarity

Numeric/character (length = 1 or total variables). Whether all (length = 1) or
each variable (length = total variables) are positive (1, "p", "pos", "positive")
or negative (-1, "n", "neg", "negative") polarity on the factor

wording_factor Character (length = 1). Whether wording factor(s) should be estimated. Defaults
to "none". Options include:

• "CTCM1" — Description coming soon...
• "CTCM1_each" — Description coming soon...
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• "RI" — Description coming soon...
• "RI_each" — Description coming soon...

CTCM1_polarity Character. Polarity of the CTCM1 wording factor(s). Defaults to "negative"
for negative polarity variables

... Additional arguments to be passed on to cfa

Value

Returns a list containing:

model Estimated ESEM model

fit Fit measures of estimated ESEM model

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000, # number of cases = 1000
variable_categories = 5 # 5-point Likert scale

)

## Not run:
# Estimate ESEM model with no wording effects
esem_no_wording_effects <- ESEM(

data = two_factor,
estimator = "WLSMV"

)

# Add wording effects using acquiescence method
two_factor_acquiescence <- add_wording_effects(

lf_object = two_factor,
proportion_negative = 0.50,
proportion_biased_cases = 0.10,
method = "acquiescence"

)

# Estimate ESEM model with wording effects
esem_wording_effects <- ESEM(

data = two_factor_acquiescence,
estimator = "WLSMV",
wording_factor = "RI"

)
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## End(Not run)

estimate_dimensions Estimates Dimensions using Several State-of-the-art Methods

Description

Estimates dimensions using Exploratory Graph Analysis (EGA), Empirical Kaiser Criterion (EKC),
Factor Forest (factor_forest), Exploratory Factor Analysis with out-of-sample prediction (fspe),
Next Eigenvalue Sufficiency Test (NEST), and parallel analysis (fa.parallel)

Usage

estimate_dimensions(
data,
sample_size,
EGA_args = list(corr = "auto", uni.method = "louvain", model = "glasso",
consensus.method = "most_common", plot.EGA = FALSE),

FF_args = list(maximum_factors = 8, PA_correlation = "cor"),
FSPE_args = list(maxK = 8, rep = 1, method = "PE", pbar = FALSE),
NEST_args = list(iterations = 1000, maximum_iterations = 500, alpha = 0.05, convergence

= 0.00001),
PA_args = list(fm = "minres", fa = "both", cor = "cor", n.iter = 20, sim = FALSE, plot

= FALSE)
)

Arguments

data Matrix or data frame. Either a dataset with all numeric values (rows = cases,
columns = variables) or a symmetric correlation matrix

sample_size Numeric (length = 1). If input into data is a correlation matrix, then specifying
the sample size is required

EGA_args List. List of arguments to be passed along to EGA. Defaults are listed

FF_args List. List of arguments to be passed along to factor_forest. Defaults are
listed

FSPE_args List. List of arguments to be passed along to fspe. Defaults are listed

NEST_args List. List of arguments to be passed along to NEST. Defaults are listed

PA_args List. List of arguments to be passed along to fa.parallel. Defaults are listed

Value

Returns a list containing:

dimensions Dimensions estimated from each method

A list of each methods output (see their respective functions for their outputs)
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Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Alexander P. Christensen <alexpaulchris-
tensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

## Not run:
# Estimate dimensions
estimate_dimensions(two_factor$data)
## End(Not run)

factor_forest Estimate Number of Dimensions using Factor Forest

Description

Estimates the number of dimensions in data using the pre-trained Random Forest model from Goret-
zko and Buhner (2020, 2022). See examples to get started

Usage

factor_forest(
data,
sample_size,
maximum_factors = 8,
PA_correlation = c("cor", "poly", "tet")

)

Arguments

data Matrix or data frame. Either a dataset with all numeric values (rows = cases,
columns = variables) or a symmetric correlation matrix

sample_size Numeric (length = 1). If input into data is a correlation matrix, then specifying
the sample size is required

maximum_factors

Numeric (length = 1). Maximum number of factors to search over. Defaults to 8
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PA_correlation Character (length = 1). Type of correlation used in fa.parallel. Must be set:

• "cor" — Pearson’s correlation
• "poly" — Polychoric correlation
• "tet" — Tetrachoric correlation

Value

Returns a list containing:

dimensions Number of dimensions identified

probabilities Probability that the number of dimensions is most likely

Author(s)

# Authors of Factor Forest
David Goretzko and Markus Buhner

# Authors of {latentFactoR}
Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Goretzko, D., & Buhner, M. (2022). Factor retention using machine learning with ordinal data.
Applied Psychological Measurement, 01466216221089345.

Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algo-
rithms to determine the number of factors in exploratory factor analysis. Psychological Methods,
25(6), 776-786.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

## Not run:
# Perform Factor Forest
factor_forest(two_factor$data)
## End(Not run)
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NEST Estimate Number of Dimensions using Next Eigenvalue Sufficiency
Test

Description

Estimates the number of dimensions in data using NEST (Achim, 2017). See examples to get started

Usage

NEST(
data,
sample_size,
iterations = 1000,
maximum_iterations = 500,
alpha = 0.05,
convergence = 0.00001

)

Arguments

data Matrix or data frame. Either a dataset with all numeric values (rows = cases,
columns = variables) or a symmetric correlation matrix

sample_size Numeric (length = 1). If input into data is a correlation matrix, then specifying
the sample size is required

iterations Numeric (length = 1). Number of iterations to estimate rank. Defaults to 1000

maximum_iterations

Numeric (length = 1). Maximum umber of iterations to obtain convergence of
eigenvalues. Defaults to 500

alpha Numeric (length = 1). Significance level for determine sufficient eigenvalues.
Defaults to 0.05

convergence Numeric (length = 1). Value necessary to be less than or equal to when estab-
lishing convergence of eigenvalues

Value

Returns a list containing:

dimensions Number of dimensions identified
loadings Loading matrix
converged Whether estimation converged. If FALSE, then results are reported from last

convergence point. Interpret results with caution.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>
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References

Achim, A. (2017). Testing the number of required dimensions in exploratory factor analysis. The
Quantitative Methods for Psychology, 13(1), 64–74.

Brandenburg, N., & Papenberg, M. (2022). Reassessment of innovative methods to determine the
number of factors: A simulation-Based comparison of Exploratory Graph Analysis and Next Eigen-
value Sufficiency Test. Psychological Methods.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

## Not run:
# Perform NEST
NEST(two_factor$data)
## End(Not run)

obtain_zipfs_parameters

Obtain Zipf’s Distribution Parameters from Data

Description

Zipf’s distribution is commonly found for text data. Closely related to the Pareto and power-law
distributions, the Zipf’s distribution produces highly skewed data. This function obtains the best
fitting parameters to Zipf’s distribution

Usage

obtain_zipfs_parameters(data)

Arguments

data Numeric vector, matrix, or data frame. Numeric data to determine Zipf’s distri-
bution parameters
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Details

The best parameters are optimized by minimizing the aboslute difference between the original fre-
quencies and the frequencies obtained by the beta and alpha parameters in the following formula
(Piantadosi, 2014):

f(r) proportional to 1 / (r + beta)^alpha

where f(r) is the rth most frequency, r is the rank-order of the data, beta is a shift in the rank (fol-
lowing Mandelbrot, 1953, 1962), and alpha is the power of the rank with greater values suggesting
greater differences between the largest frequency to the next, and so forth.

Value

Returns a vector containing the estimated beta and alpha parameters. Also contains zipfs_sse
which corresponds to the sum of square error between frequencies based on the parameter values
estimated and the original data frequencies

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>,
Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Mandelbrot, B. (1953). An informational theory of the statistical structure of language. Communi-
cation Theory, 84, 486–502.

Mandelbrot, B. (1962). On the theory of word frequencies and on related Markovian models of
discourse. Structure of Language and its Mathematical Aspects, 190–219.

Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic Bulletin & Review, 21(5), 1112-1130.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Transform data to Mandelbrot's Zipf's
two_factor_zipfs <- data_to_zipfs(

lf_object = two_factor,
beta = 2.7,
alpha = 1

)

# Obtain Zipf's distribution parameters
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obtain_zipfs_parameters(two_factor_zipfs$data)

simulate_factors Simulates Latent Factor Data

Description

Simulates data from a latent factor model based on many manipulable parameters. Parameters do
not have default values and must each be set. See examples to get started

Usage

simulate_factors(
factors,
variables,
variables_range = NULL,
loadings,
loadings_range = NULL,
cross_loadings,
cross_loadings_range = NULL,
correlations,
correlations_range = NULL,
sample_size,
variable_categories = Inf,
categorical_limit = 7,
skew = 0,
skew_range = NULL

)

Arguments

factors Numeric (length = 1). Number of factors

variables Numeric (length = 1 or factors). Number of variables per factor. Can be a
single value or as many values as there are factors. Minimum three variables per
factor

variables_range

Numeric (length = 2). Range of variables to randomly select from a random
uniform distribution. Minimum three variables per factor

loadings Numeric or matrix (length = 1, factors, total number of variables (factors x
variables), or factors x total number of variables. Loadings drawn from a
random uniform distribution using +/- 0.10 of value input. Can be a single value
or as many values as there are factors (corresponding to the factors). Can also
be a loading matrix. Columns must match factors and rows must match total
variables (factors x variables) General effect sizes range from small (0.40),
moderate (0.55), to large (0.70)



simulate_factors 29

loadings_range Numeric (length = 2). Range of loadings to randomly select from a random
uniform distribution. General effect sizes range from small (0.40), moderate
(0.55), to large (0.70)

cross_loadings Numeric or matrix(length = 1, factors, or factors x total number of variables.
Cross-loadings drawn from a random normal distribution with a mean of 0 and
standard deviation of value input. Can be a single value or as many values as
there are factors (corresponding to the factors). Can also be a loading matrix.
Columns must match factors and rows must match total variables (factors x
variables)

cross_loadings_range

Numeric (length = 2). Range of cross-loadings to randomly select from a ran-
dom uniform distribution

correlations Numeric (length = 1 or factors x factors). Can be a single value that will be
used for all correlations between factors. Can also be a square matrix (factors
x factors). General effect sizes range from orthogonal (0.00), small (0.30),
moderate (0.50), to large (0.70)

correlations_range

Numeric (length = 2). Range of correlations to randomly select from a random
uniform distribution. General effect sizes range from orthogonal (0.00), small
(0.30), moderate (0.50), to large (0.70)

sample_size Numeric (length = 1). Number of cases to generate from a random multivariate
normal distribution using rmvnorm

variable_categories

Numeric (length = 1 or total variables (factors x variables)). Number of
categories for each variable. Inf is used for continuous variables; otherwise,
values reflect number of categories

categorical_limit

Numeric (length = 1). Values greater than input value are considered continuous.
Defaults to 7 meaning that 8 or more categories are considered continuous (i.e.,
variables are not categorized from continuous to categorical)

skew Numeric (length = 1 or categorical variables). Skew to be included in categorical
variables. It is randomly sampled from provided values. Can be a single value
or as many values as there are (total) variables. Current skew implementation is
between -2 and 2 in increments of 0.05. Skews that are not in this sequence will
be converted to their nearest value in the sequence. Not recommended to use
with variables_range. Future versions will incorporate finer skews

skew_range Numeric (length = 2). Randomly selects skews within in the range. Somewhat
redundant with skew but more flexible. Compatible with variables_range

Value

Returns a list containing:

data Simulated data from the specified factor model
population_correlation

Population correlation matrix
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parameters A list containing the parameters used to generate the data:

• factors — Number of factors
• variables — Variables on each factor
• loadings — Loading matrix
• factor_correlations — Correlations between factors
• categories — Categories for each variable
• skew — Skew for each variable

Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Alexander P. Christensen <alexpaulchris-
tensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011).
Performance of Velicer’s minimum average partial factor retention method with categorical vari-
ables.
Educational and Psychological Measurement, 71(3), 551-570.

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., ... & Martinez-
Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional
techniques to identify the number of latent factors: A simulation and tutorial. Psychological Meth-
ods, 25(3), 292-320.

Examples

# Generate factor data
two_factor <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Randomly vary loadings
two_factor_loadings <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings_range = c(0.30, 0.80), # loadings between = 0.30 to 0.80
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000 # number of cases = 1000

)

# Generate dichotomous data
two_factor_dichotomous <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
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loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000, # number of cases = 1000
variable_categories = 2 # dichotomous data

)

# Generate dichotomous data with skew
two_factor_dichotomous_skew <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000, # number of cases = 1000
variable_categories = 2, # dichotomous data
skew = 1 # all variables with have a skew of 1

)

# Generate dichotomous data with variable skew
two_factor_dichotomous_skew <- simulate_factors(

factors = 2, # factors = 2
variables = 6, # variables per factor = 6
loadings = 0.55, # loadings between = 0.45 to 0.65
cross_loadings = 0.05, # cross-loadings N(0, 0.05)
correlations = 0.30, # correlation between factors = 0.30
sample_size = 1000, # number of cases = 1000
variable_categories = 2, # dichotomous data
skew_range = c(-2, 2) # skew = -2 to 2 (increments of 0.05)

)

skew_tables Skew Tables

Description

Tables for skew based on the number of categories (2, 3, 4, 5, or 6) in the data

Usage

data(skew_tables)

Format

A list (length = 5)

Examples

data("skew_tables")
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